明らかに四則演算ではない演算ってないんですか?

1132人目の素数さん2018/10/02(火) 20:18:48.39ID:GnbXUZkH
たとえば、微分は引き算と割り算の合わせ技
積分は掛け算と足し算の合わせ技だと思うんですけど
演算ってどんなものでも、結局は、四則演算の延長なんでしょうか?

この演算は明らかに四則演算ではないってものがあれば教えてくれませんか?

2132人目の素数さん2018/10/02(火) 22:01:29.52ID:jwxJ4NfH
任意のa,b∈ℕに対して a#b=0.1となる演算#は四則演算の拡張になる?

3132人目の素数さん2018/10/02(火) 22:18:07.75ID:GnbXUZkH
>>2
a#b=(a+b)*0 +0.1
なら四則演算かも

4132人目の素数さん2018/10/02(火) 22:29:13.11ID:yF2Muh45
>>1
論理演算なんかがそれではないのか。
論理和、論理積というから、
広い意味では仲間だろうけど、
普通の足し算や掛け算とは違うと思う。

5132人目の素数さん2018/10/02(火) 22:39:04.66ID:d+NYyyrF
圏論で積と和っぽいものの一般論扱ってる

6132人目の素数さん2018/10/02(火) 23:18:02.02ID:xp+vsAnX
1@1=112

7132人目の素数さん2018/10/03(水) 02:34:37.32ID:tWdPh9XK
写像の合成は?

8132人目の素数さん2018/10/03(水) 03:58:49.86ID:ksFvnuLZ
まぁ>>1が言ってるのは単に+-×÷以外に数を対象にして行える計算方法はないのかってことなんだろ

9132人目の素数さん2018/10/03(水) 20:56:21.55ID:TvCfrIb2
1@2≠2@1な演算子は四則演算ではないし
123454321?4=2なんて演算子(4の個数を数えてる)とかも

10132人目の素数さん2018/10/03(水) 21:07:38.57ID:X5e90cZ/
>>9
それも四則演算の組み合わせで説明できそうな気がするんだけど。
もっと根本的に、四則演算的な発想ではない演算ってないのかな

11132人目の素数さん2018/10/03(水) 21:13:50.86ID:TvCfrIb2
四則演算的な発想とはどういう意味?
数 演算子 数が数にならないっていう事?

12132人目の素数さん2018/10/03(水) 21:40:01.56ID:GzOj+yqF
四則演算も突き詰めて行けば足し算に帰着できますよね

13132人目の素数さん2018/10/03(水) 21:55:09.00ID:N5gSAYAy
>>1
束論

14132人目の素数さん2018/10/03(水) 21:58:12.56ID:w6uZhmSj
そういう話を突き詰めたい場合は、面倒でも厳密に定義した方がいい

二項演算R×R→Rの部分集合Fを以下のように定義し、Fの要素を「四則演算的演算」と呼ぶ
(1) a∈Rのとき、f(x,y)=a となる二項演算fはFの要素である
(2) f(x,y)=x となる二項演算fはFの要素である
(3) f(x,y)=y となる二項演算fはFの要素である
(4) f,g∈F について、
・h(x,y)=f(x,y)+g(x,y)となる二項演算hはFの要素である
・h(x,y)=f(x,y)−g(x,y)となる二項演算hはFの要素である
・h(x,y)=f(x,y)×g(x,y)となる二項演算hはFの要素である
・h(x,y)=f(x,y)÷g(x,y)となる二項演算hはFの要素である
(5) 上記(1)〜(4)に挙げたいずれかの条件を満たすもののみがFの要素である

(問題)このとき、二項演算R×R→Rのすべてからなる集合は、Fと一致するか?

題意はこれで合っている?

15132人目の素数さん2018/10/03(水) 22:09:03.40ID:xNZIYpYv
極限とかどうだろう

16132人目の素数さん2018/10/03(水) 22:23:49.54ID:X5e90cZ/
>>14
すごく面白そう。
(4)は無限回繰り返すということも
含めていいんだろうか。

17132人目の素数さん2018/10/04(木) 01:48:01.69ID:iulkvuV5
自演乙

18132人目の素数さん2018/10/04(木) 02:38:33.23ID:mPrBYx+Z
モジュラー形式って別?

19132人目の素数さん2018/10/04(木) 02:52:17.25ID:r15W6lWn
f(x,y)=∅ はどうですか

20132人目の素数さん2018/10/04(木) 02:57:30.11ID:r15W6lWn
>>19
それは写像とは言わない

21132人目の素数さん2018/10/04(木) 03:14:38.72ID:4YZP40VO
もうペアノの公理の時点で加法扱いだと思うと相当厳しいよね。

22132人目の素数さん2018/10/04(木) 07:16:37.91ID:G1I4SJCO
x^yが有理数なら1を返し無理数なら0を返す関数

23132人目の素数さん2018/10/07(日) 02:54:10.03ID:4d6U6LZH
>>1
ぼおっとしたイメージで語られても

24132人目の素数さん2018/10/07(日) 02:55:44.71ID:4d6U6LZH
>>16
>すごく面白そう。
そうじゃなくて
お前がナニを考えているかを定式化して見ろって言われてんだよ
分かんね?

25132人目の素数さん2018/10/09(火) 22:35:20.49ID:RQ1659x9
無限回ってテイラー展開もありってことかよ
大分広いぞ

26132人目の素数さん2018/10/09(火) 23:18:18.08ID:5X13lNOA
xの5次方程式
x^5 +ax^4 +bx^3 -7x^2 +3x +1 =0
の5つの根のうち、絶対値の最も小さい根の絶対値を表す二項演算f(a,b)

27132人目の素数さん2018/10/11(木) 12:42:04.17ID:hDvRUG8L
      ⊂⊃
     |\__/|
   / ▼▼▼ヽ
   |  (●) (●) |
   | 三 (_又_)三|
   \_  ^_/
     ( ∪  ∪
     |   |
      ) /
      ν

28132人目の素数さん2018/10/11(木) 18:09:46.81ID:NqwKM2SH
加法と乗法にさらになにか新しい演算加えて
体を拡張したような面白い対象ができないかみたいな話なのでは

29132人目の素数さん2018/10/11(木) 21:11:53.35ID:FTjiwi37
>>28
そういうことですね。
語彙が無いので伝わらないのですが、助かります。

30132人目の素数さん2018/10/13(土) 23:03:14.16ID:SmrLdBOq
ビジービーバー関数とかどうかな?

31132人目の素数さん2018/10/14(日) 00:16:35.36ID:v21qITeD
>>22とか>>26みたいなアルゴリズム演算とか、ある種の代数系の形式的操作は
普通の四則演算とは違う
ただ、基本(基礎体)として四則演算を考えるものばかりってのはその通りだろうな
個人的にはそういうことは趣味に留めてサクサク四則演算上の数学を開発したほうがいいとは思うが

32132人目の素数さん2018/10/28(日) 06:17:06.30ID:+nkqilcu
>>27
これ

33132人目の素数さん2018/12/12(水) 16:31:23.54ID:xmNas0so
0と1をできるだけ同じパターンが現れないように前から順に並べることを考える
ただし、パターンとは例えば0,1,0という数列では(0),(1),(0,1),(1,0),(0,1,0)である
規則は次の3つ
(1)前に1度だけ出現したパターンは、回避できない場合を除いて使ってはいけない
(2)長いパターンと短いパターンのどちらかが重複してしまうときは、長いパターンを避ける
(3)同じパターンを3回連続で繰り返してはいけない(例えば(1,1,1),(0,1,0,0,1,0,0,1,0)など)
(4)0と1の両方が使えるときは0を優先する
これらの規則に基づいて並べると、
0,1,0,0,1,1,0,1,0,1,1,...となる。これを順にf(1)、f(2)、…とする

34132人目の素数さん2018/12/15(土) 00:06:27.00ID:STbkeLJ6
確率分布を指定するとその分布に従う完璧な乱数列を返す関数は
おそらく四則演算などでは作れない。

35132人目の素数さん2018/12/15(土) 02:09:00.55ID:dgleq6vh
包除原理

36132人目の素数さん2018/12/15(土) 08:20:58.27ID:84AjtJYa
>>1
掛け算は足し算の合わせ技じゃないの?

37132人目の素数さん2018/12/15(土) 08:34:26.74ID:jt6BTiJO
開平計算は?

38132人目の素数さん2019/04/25(木) 23:45:14.86ID:nivqyMvc
まず、「演算」で何を意味するかを確定すること。

例えば、通常の四則演算は数に対する2項演算。または数の集合上の2変数関数。

微分は関数に対して関数を対応させる線型作用素、または特定の点での値を対応させる線形汎関数。積分も不定積分と定積分でそれぞれどちらかになる。

まあ、極限操作を許しているようなので、かなりのものが含まれるだろうけど。

新着レスの表示
レスを投稿する