大魔導石とその応用

1ご冗談でしょう?名無しさん2019/08/17(土) 20:24:42.74ID:OPCKVf+0
大魔導石は、貴世石帝石貴世世世世世世石を使うのだが、貴世世世世世世世世世石のつくり方に、帝王石を賢者の石で錬成して
繋げて作るのだが、貴世石帝石貴世世世世世世石を使うのだが、貴世世世世世世世世
世石のつくり方に、サイダーと帝王石を混ぜて、賢者の石で錬成して繋げて作るのだ
が、錬成が難しい。 登記 これで、ピュアゴールド、ピュアシルバーはできる。
レアメタル、新代替レアメタルだろうが、宝石など、新物質だろうが、作り放題だ。登記

61ご冗談でしょう?名無しさん2019/08/19(月) 14:04:10.53ID:79V/Bmub
本領域について

本新学術領域では、計算科学と計算機科学を学融合させた、従来の計算物理学の枠を打ち破るコンピューティクスという学問領域を確立し、それにより量子論の第一原理に立脚したアプローチを革新的に飛躍させ、
さらに実験研究者との有機的連携により、物質デザインの根幹である複合相関と非平衡ダイナミクスの解明・予測を行うものです。

これにより、経験的ものづくりを演繹的なそれへと進化させるパラダイム変換を目指します。これは、超並列化、多重階層化という大きな変化が始まろうとしているコンピュータ・アーキテクチャ環境の中で、
従来からの計算科学のアプローチの困難を解決するものであり、一方、ナノテクノロジーの根幹を支える新物質デザインの創出を目指すものです。

62ご冗談でしょう?名無しさん2019/08/19(月) 14:04:41.26ID:79V/Bmub
金属と有機物で新物質を作り出す

63ご冗談でしょう?名無しさん2019/08/19(月) 14:05:19.22ID:79V/Bmub
金属と有機物で新物質を作り出す. 有機物のツールを使って極微サイズの金属化合物を 自在に操る

64ご冗談でしょう?名無しさん2019/08/19(月) 14:05:58.73ID:79V/Bmub
東大の大越慎一教授のグループは、レアメタルに代わる新物質を発見して、
それを使うと、「安いコストでブルーレイのような大容量の光ディスクを開発
できる可能性があるとして注目」だそうです。

[URL]
新物質発見 安価なディスクも
5月24日 10時53分

[URL]
光をあてると金属から半導体に、東大教授らが新物質を発見
2010年05月25日 12:48 発信地:東京

[URL]
ブルーレイの約200倍という記録密度を可能にする新素材「五酸化三チタン」

 スラドJのテラテラ詐欺は、笑った。

 実用までにはまだ時間がかかるかもしれないが、新素材、新材料など物性系、
デバイス系は一発で世の中をひっくり返すから怖いんだよね。
 所詮、文明・文化も物理的な存在の上に成り立ってますからね。

65ご冗談でしょう?名無しさん2019/08/19(月) 14:06:42.88ID:79V/Bmub
 あ、
[URL]
NHKスペシャル「人体“製造”〜再生医療の衝撃〜」
についているfetishrubberさんのコメント。さらにコメントしようとして、パ
ソコンの初期にまつわる話であれこれ思い出したものの、書くのが面倒になっ
てやめちゃったんです。fetishrubberさん、すみません。そのうち。約束でき
ないけど。^^l

関連:
[URL]
新タイプの超伝導物質発見
[URL]
山根一眞「メタルカラーの時代」

===
標題: Re: 東京大学の大越慎一教授、レアメタルに代わる新物質
---
 大越慎一で検索したら、すごい世界があるね。
 錯体化学という世界があって、錯体化学会が、錯体化学会選書というのを出
している。

66ご冗談でしょう?名無しさん2019/08/19(月) 14:07:32.20ID:79V/Bmub
革新電池における 放射光利用技術への期待
(Adobe PDF)

システム. 新原理 新物質 新プ セ. 新原理・新物質・
新プロセス. 基盤技術(解析、研究 手法) .... 1)固体電解質. 2)カーボンアロイ触媒. 3)新活物質. 新原理・新物質・新 プロセス. 基盤技術(解析、研究手法). ナノ粒子. ナノコーティング. 自己組織化. 界面 現象解明 ...など トヨタ研

67ご冗談でしょう?名無しさん2019/08/19(月) 14:08:12.16ID:79V/Bmub
構造制御および電子状態制御に基づく新物質の開発
http://molecules.escidoc.jp/

68ご冗談でしょう?名無しさん2019/08/19(月) 14:08:56.17ID:79V/Bmub
ポリアミンとは、全ての動物や人間の細胞の中でアミノ酸の一種であるアルギニンから合成される物質です。(ポリアミンは、20種以上確認されていて、代表的なポリアミンとしてプトレスシン、スペルミジン、スペルミンなどがある)
その役割は、細胞の分裂を促進して、細胞が新しく生まれ変わることを助けています。新しい細胞の設計図といわれるDNAから正しく細胞の情報をコピーして正確に新しい細胞を作っていくのです。


しかし、加齢に伴ないポリアミンを合成する酵素の活性が低下すると、細胞分裂がうまくいかずにその周期が狂いだし、古い細胞が放置されるようになります。
人間の細胞を培養すると50回程度しか細胞分裂をしません。「肌は28日で細胞が入れ替わる」などといいますが、人間の体内の細胞の細胞分裂には限界があるのです。


ポリアミンは、大豆を発酵させた納豆、醤油、味噌に高濃度に含まれています。「細胞分裂の盛んな場所にはポリアミン有」といわれ、特に、
ポリアミンは納豆の納豆菌の中に多く含まれています。納豆は、納豆菌が驚異的に細胞分裂することでできる食べ物なのでポリアミンを補充するには、絶好の食べ物なのです。
(納豆菌は50g・1パックの中に、なんと500億個もあるといわれています)また、その他には大豆、キノコ類、そしてチーズやヨーグルトにも、
微生物が産生したポリアミンが多く含まれているといわれています。

69ご冗談でしょう?名無しさん2019/08/19(月) 14:09:35.43ID:79V/Bmub
宮野健次郎教授が関わっている研究成果について、紹介されています(「東工大ら、パルスレーザー光で100億分の1秒だけ出現する新物質構造を検出」)。
マイコミジャーナルのページへ

東京工業大学(東工大)、科学技術振興機構(JST)、高エネルギー加速器研究機構(KEK)、名古屋大学、東京大学、東北大学らによる研究グループは、
パルスレーザー光を照射した物質の内部の原子が規則正しく動くことにより、100億分の1秒の間だけ出現する過渡的な新物質構造を検出することに成功したことを明らかにした。

70ご冗談でしょう?名無しさん2019/08/19(月) 14:10:10.47ID:79V/Bmub
また、試料面ではマンガン酸化物へ侵入する深さ(侵入長)がX線と励起レーザー光では、それぞれ数μmと数十nm程度と、2桁以上も異なるため、通常のマンガン酸化物結晶試料では、レーザーによって励起されていない
成分の情報しか得ることができなかった。そこで侵入長の問題を回避するために、厚さ80nmの薄膜形状の結晶をパルスレーザー堆積法により作製。
このような試料開発により、わずかな量の結晶でも新原理に基づく物質・材料開発が行えること、さらには光デバイスなどに有用な超薄膜形態そのもので光励起によって生ずる状態の動的構造研究が可能であることが実証された。

今回の研究は、通常は安定な物質であるマンガン酸化物の薄膜材料を光励起することで、100億分の1秒以下の超高速で大きく色合いを変化させられること、そしてその原因が、
100億分の1秒と言う極短時間だけ別の構造に変化しているためであることを、原子レベルの精密構造観測で実証したもの。この観測は、PF-ARのパルスX線と超短
パルスレーザーを組み合わせた装置によって達成されたもので、観測された構造は、従来の予測とはまったく異なっており、結晶中で光励起前とも異なる新たな軌道秩序状態が生じていることが分かった。
これは光励起で生み出される「動的構造」に基づく新しい物質相が、「静的で安定な構造」に基づく従来の物質科学の考え方からはまったく予想外の新しい秩序をもったものであることを示しているほか、
温度による相転移では到達することのできない「隠れた物質相」を、光によって実現可能であることを実証したものとなっている。

71ご冗談でしょう?名無しさん2019/08/19(月) 14:10:58.31ID:79V/Bmub
このような隠れた物質相の実在性は、物質の存在形態に関する基本問題として長く続いた議論に対し1つの答えを与え、熱擾乱を受けないデバイス材料開発の新たなフィールドを拓くこととなる。

また、今回開発された時間分解X線回折法は、原子スケールにおける極めて短い時間(100億分の1秒)の変化を、その光学特性などの物性変化と結びつけながら、同時に直接観測することを可能にするもので、これは
超高速な光現象のメカニズムを動画として観測することができるという意味で画期的なものとなると研究グループでは説明している。

なお、このような光により光学特性、伝導性、磁性などの物性が超高速変化する現象を詳しく探求することで、超高速な微小メモリや相スイッチの材料開発、デバイス動作その場解析が推進されることが期待されるという

72ご冗談でしょう?名無しさん2019/08/19(月) 14:11:29.58ID:79V/Bmub
米物理学者ネットサイト4月14日(北京時間)の報道によると、林業の副産物と甲殻類生物の殻によって形成される複合物質が、水中に漏れた放射性物質を取り除く効果を発揮できる可能性があることが、米ノースカロライナ州大学の研究員によって発見された。

73ご冗談でしょう?名無しさん2019/08/19(月) 14:13:19.04ID:79V/Bmub
2007年10月10日17時20分配信

Yahoo!ブックマークに登録 楽天SocialNewsに投稿! 友達にメールですすめる スクラップする
国内の研究グループが、これまで確認された中で最も大きな空洞を持つ、結晶性ハイブリッド有機金属系構造体(MOF)を開発した。水素燃料の貯蔵や触媒、光センサーなどへの活用が期待される。

 崇実大学化学科のキム・ジホン教授の研究グループは10日、「高効率水素エネルギーの製造・貯蔵・利用技術開発事業団」の支援を受け、内部の空洞の直径が最大で4.7ナノメートルになる
結晶性ハイブリッドMOFの合成に成功したことを明らかにした。MOFは、有機分子と金属イオンが交差するようにつながり合成される過程で内部が空いた結晶を形成する物質だ。
従来のMOFの空洞直径は最大3ナノメートル以下で、空洞がそれ以上大きくなると構造が不安定になるとされていた。


 このように内部に大きな空洞を持つ多孔性物質は、触媒やセンサー気体の分離・貯蔵など多様な用途がある。特に最近は水素燃料自動車の研究が活発になっており、水素燃料の貯蔵用物質として注目を浴びている。


 研究結果をまとめた論文は、ドイツの化学学術誌「アンゲバンデ・ケミ」11月号のトップに選ばれたほか、米国化学会と英国化学工学会でも紹介された。
Copyright 2007(C)YONHAPNEWS. All rights reserved.

74ご冗談でしょう?名無しさん2019/08/19(月) 14:13:48.93ID:79V/Bmub
生分解性プラスチックを強力に分解する新物質が、茨城県つくば市にある農業環境技術研究所で発見されました。
この物質によると、約20日間で分解することが可能ということです!

通常、生分解性プラスチックを分解するには、半年から1年はかかるんです。すごい発見ですね!
以前、プラスチックを分解するバクテリアを発見した少年がいるという記事を書きました。

プラスチックを分解するバクテリア

このバクテリアでは、プラスチックの袋を3か月で分解することができます。
この発見もすごいのですが、今回発見された、20日間で分解できる物質が実用的になると、ゴミ問題に大きな変化をもたらすことになりますね。

今回発見された物質というのは、オオムギのカビ作る酵素なんです。
分解されやすい種類だと、6日間で90%以上が分解できるそうです。
分解しにくい物質で20日間なんですね^^

研究員の方の話によると、今後は、既に見つかっている生分解性プラスチックを分解する酵母と組み合わせ、実用化に向けた技術を開発したいとのことです。

今後の動向が楽しみですね。

75ご冗談でしょう?名無しさん2019/08/19(月) 14:14:20.96ID:79V/Bmub
東京大学大学院の大越慎一化学教授の研究グループが、DVDの容量を一気に1000倍増やせる驚異の物質を見つけておしまいになりました。

その新物質の名は「ラムダ型酸化チタン」。これを塗ったDVDは光を当てると電気を伝導し(オン)、光から遠ざけると黒い金属に戻る(オフ)んです。不思議なこともあるもんですねぇ。


この物質は、光を当てると、金属的な性質をもつ黒色のラムダ型から半導体的な性質をもつ
茶色のベータ型(β-Ti3O5)への光相転移(光誘起金属-半導体転移)を示す。また、その逆の相転移も光照射により可能であることが分かった。室温で光可逆的に相転移を示す
金属酸化物は、この物質が世界で初めてである。ラムダ型酸化チタンは、チタン原子と酸素原子のみからなる単純な物質で、レアメタルなどを含まないため、
非常に安価で環境に優しい物質である。また、粒径が10〜20ナノメートル程度の微粒子で得られるため、次世代の超高密度光記録材料としても有望である

76ご冗談でしょう?名無しさん2019/08/19(月) 14:14:57.85ID:79V/Bmub
酸化物超伝導体は高温で超伝導状態になる利
点があるが、高温高磁場での臨界電流密度がま
だ実用で求められている値に達していない。臨
界電流密度を向上させるには酸化物超伝導体中
にピニングセンター(常伝導領域)を導入し、ピ
ニング力を上げる必要がある。重イオン照射は
ピニングセンターを導入する方法の一つであり、
製作過程によらず、照射条件を変化させること
で超伝導体内のピニングセンターの形状・密度
を制御できる利点がある。
本研究では図 1 に示す YBCO 実用線材に照射
フルエンス、イオン種を変えた重イオン照射を
行い、試料の特性向上条件を調べた。
[実験]
○高エネルギー重イオン照射実験

77ご冗談でしょう?名無しさん2019/08/19(月) 14:15:34.32ID:79V/Bmub
酸化物半導体と鉄系超伝導−新物質・新機能・応用展開

78ご冗談でしょう?名無しさん2019/08/19(月) 14:16:21.92ID:79V/Bmub
常温で光をあてると、金属から半導体に性質を変える新しい物質を東京大学のグループが世界で初めて発見しました。「酸化チタン」の仲間の物質で、世界的に枯渇が懸念されるレアメタルを使わずに、
安いコストでブルーレイのような大容量の光ディスクを開発できる可能性があるとして注目されています。

新しい物質を発見したのは、東京大学大学院理学系研究科の大越慎一教授のグループです。研究グループでは、ブルーレイなどの光ディスクの材料に使われる
希少で高価な「レアメタル」に代わる物質を作ろうと、光触媒などとして広く利用されている「酸化チタン」という物質を使って研究を進めました。その結果、「酸化チタン」で1200度の熱で処理すると、
粒子の大きさが10億分の1メートルのナノサイズにまで小さくなり、常温で光をあてたところ、金属から半導体に性質を変えることがわかりました。世界で初めての発見で、
この性質を利用すると、光のあて方によって「オン」と「オフ」を切り替えることができ、光ディスクの材料としての特性も十分、備えているということです。「酸化チタン」は、
低価格で入手することが可能だということで、大越教授は「安いコストで大容量の光ディスクを開発できる可能性がある」と話しています。

79ご冗談でしょう?名無しさん2019/08/19(月) 14:16:49.38ID:79V/Bmub
京都薬科大学(橋本貴美子氏、慶大から転出)、慶応大学(サエキ・ヨウコ氏)、上野動物園の合同研究チームが先月末、英学術誌ネイチャー(Nature.)に発表した「カバの赤い汗は紫外線をカットし、
日焼け防止作用がある」という研究が、動物園関係者などを中心に、国際的な論争を生んでいます。
動物園関係者の話では、カバは血のような、赤い分泌物を噴出するそうです。
研究は、カバ(Hippopotamus amphibius)の汗(?)から抽出した色素(pigments)に日焼け防止と抗細菌作用があるというものです。
色素は赤と黄色で分泌される炭素環を持つ物質ですが、分泌前は無色だそうです。
研究チームは物質が、カバの体内ではアミノ酸のチロシン(tyrosine)から合成されるのではないかと推測しています。
抗細菌作用実験は赤い色素を使い、緑膿菌 (Pseudomonas aeruginosa)、クレブシェラ肺炎の原因細菌(Klebsiella pneumonia)に対して行われましたが、顕著な効果を示したそうです(実験室内)。
研究チームは二つの色素をヒポスドリック酸(hipposudoric acid)とノルヒポスドリック酸(norhipposudoric acid)と名付けました。
これまでも植物からは、紫外線をカットする物質は種々得られているようですが、日焼け防止剤の開発には繋がっていません。
最大の難点は、物質が非常に不安定であることです。
今回得られた物質も実験室では非常に不安定だそうですが、動物園のカバの赤い分泌物は、5分から、数時間は体表にとどまるといわれますので、安定化の研究余地はありそうです。

80ご冗談でしょう?名無しさん2019/08/19(月) 14:17:27.44ID:79V/Bmub
東京大学身体運動科学研究室 教授 理学博士 石井直方先生の研究によりますと、「ただ動くだけだと思われていた筋肉から健康によい物質『マイオカイン』が出る事がわかった。」そうです。

【筋肉から出る新物質「マイオカイン」の健康効果】
1.脂肪組織に働いて脂肪分解
2.肝臓に働いて糖代謝か依然
3.血管壁に働いて動脈効果予防
4.脳に働いて認知症予防

「マイオカイン」は、約30種類あり、その効果が現在、世界中で研究されています。

81ご冗談でしょう?名無しさん2019/08/19(月) 14:18:17.34ID:79V/Bmub
電気と磁気の両方が変化 大阪大、新物質発見
 磁力をかけると電気的性質が変わり、電気によって磁石としての性質が変わる新物質を大阪大の木村剛教授らが発見し、24日付の英科学誌ネイチャーマテリアルズ電子版に発表した。  
「電気磁気効果」と呼ばれるこの特徴を持つ物質は非常に少ない。電気と磁気の状態をうまく制御できれば磁気センサーへの応用や、ハードディスク容量を従来の数倍に高めることができると期待されている。  
木村教授は、超電導材料として知られる酸化銅に着目。電気磁気効果を持つ既存の物質より200度も高いマイナス43度で、磁気と電気的性質をそれぞれ大きく変化させることができるのを確かめた。  
将来は室温で性能を発揮させるのが目標。木村教授は「一気に目標に近づけた。夢の新素材の実現を目指したい」と話している。

82ご冗談でしょう?名無しさん2019/08/19(月) 14:19:04.46ID:79V/Bmub
東京工業大学(東工大)、科学技術振興機構(JST)、高エネルギー加速器研究機構(KEK)、名古屋大学、東京大学、東北大学らによる研究グループは、
パルスレーザー光を照射した物質の内部の原子が規則正しく動くことにより、100億分の1秒の間だけ出現する過渡的な新物質構造を検出することに成功したことを明らかにした。
http://news.mynavi.jp/news/2011/01/20/007/

96 名前:ご冗談でしょう?名無しさん[] 投稿日:2012/01/20(金) 01:00:55.80 ID:qBBg3rZ+ [8/14]
鉄系超伝導に新物質、毒性の低い元素で発見
1.独立行政法人 物質・材料研究機構(理事長:岸 輝雄、以下NIMS)と独立行政法人 科学技術振興機構(理事長:北澤 宏一、以下JST)は、
最近、高温超伝導体の新しい鉱脈と期待されている鉄系超伝導に、毒性の低い元素のみで構成された新超伝導物質を発見した。

97 名前:ご冗談でしょう?名無しさん[] 投稿日:2012/01/20(金) 01:03:38.81 ID:qBBg3rZ+ [9/14]
埋もれてしまった新物質


***** 981028 up dated *******

「埋没物質」担当.

発表していただく方々と題名,発表形式が決まりましたのでお知らせします.


敬称略,返信到着順(講演の順序は変わる可能性があります.)

御崎洋二 「埋没から救出されたTTP系導体と今後の救出活動について」

森 初果 「BEDT-TTFとEDT-TTF塩の埋没物質を徒然なるままに」

内藤俊雄 「有機・無機層状ペロブスカイトに明日はあるか?」

山本浩史 「もの作りの楽しさと埋没物質の関係について」

西川浩之 「埋没物質ing−DOET系ドナーを用いた塩」

83ご冗談でしょう?名無しさん2019/08/19(月) 14:19:37.89ID:79V/Bmub
IV−1 Li(リチウム)の代替
IV−2 Be(ベリリウム)の代替
IV−3 Ti(チタン)の代替
IV−4 V(バナジウム)、Nb(ニオブ)、Ta(タンタル)の代替
IV−5 Cr(クロム)の代替
IV−6 Mo(モリブデン)の代替
IV−7 W(タングステン)の代替
IV−8 Re(レニウム)の代替
IV−9 Co(コバルト)の代替
IV−10 Ni(ニッケル)の代替
IV−11 Pt(白金)族の代替
IV−12 Cd(カドミウム)の代替
IV−13 Hg(水銀)の代替
IV−14 In(インジウム)の代替
IV−15 Ge(ゲルマニウム)の代替
IV−16 Sn(スズ)の代替 1
IV−17 Pb(鉛)の代替
IV−18 Sb(アンチモン)の代替
IV−19 Bi(ビスマス)、Se(セレン)、Te(テルル)の代替

V 章 元素代替のフロンティア─理論と技術を伴った発想の転換が可能性を広げる    
V−1 Pt(白金)触媒をブロンズで、そしてカーボンで
V−2 Dy(ジスプロシウム)は不要?─保磁力向上をメカニズムで支える
V−3 Ni(ニッケル)の代わりにN(窒素)

84ご冗談でしょう?名無しさん2019/08/19(月) 14:20:06.90ID:79V/Bmub
V−4 Al(アルミニウム)を使って高機能メモリ
V−5 Cr(クロム)もZn(亜鉛)もいらない表面処理
V−6 Li(リチウム)イオン電池はCo(コバルト)電池だったが
V−7 セメント材料が透明電極に
V−8 レアメタル代替を支える3つの技術
V−9 代替のサクセスストーリーに見る3視点

VI 章 不足元素の代替から戦略元素の創出へ    
VI−1 これまでの代替技術開発は受動態
VI−2 元素をよく知り、眠っている機能を引き出す
VI−3 原子配列構造に注目した代替とは
VI−4 鉄からレアメタル─組織制御が機能を決める
VI−5 電子状態のコントロール
VI−6 電子状態制御による代替
VI−7 総合化した取り組みへ
VI−8 ラティス・エンジニアリング
VI−9 戦略元素追求戦略の4つの作戦と陣地の構築
VI−10 ナノ・アルケミーが物質感を変える

VII 章 ファクター8で持続可能な資源利用へ   

85ご冗談でしょう?名無しさん2019/08/19(月) 14:20:34.71ID:79V/Bmub
セリウムは電子部品の研磨などにも使われる重要な物質でありながら従来は代替品がなく、さらに産出量の9割を占める中国が最近になって輸出
制限を行なったことで価格の高騰などが起きていた。今回、研究グループでは研磨パッドの素材を変えるとともに、研磨剤としてセリウムより安価な酸化ジルコニウムを使うことで従来品より研磨効率を50%改善したとのこと。

86ご冗談でしょう?名無しさん2019/08/19(月) 14:21:07.98ID:79V/Bmub
★ さらなるイノベーションの拡大へ:脱!レアメタル危機!!
★ レアメタルの「代替材料技術」と「リサイクル技術」の最新研究成果を徹底解説!!
★ レアメタル資源の現状,元素代替・減量技術,全面代替のための材料設計技術,マテリアルフロー,リサイクル技術等を収録!!

87ご冗談でしょう?名無しさん2019/08/19(月) 14:21:50.77ID:79V/Bmub
ハードディスク装置におけるレアメタル
1.2.1 ハードディスク装置の進歩と装置の概要
1.2.2 磁気ヘッドにおけるレアメタル
1.2.3 磁気記録媒体(ディスク)におけるレアメタル
1.3 おわりに

2. 輸送技術とレアメタル―自動車,鉄道,航空機とレアメタル―(熊井真次)
2.1 自動車とレアメタル
2.1.1 排気系部品
2.1.2 排ガス浄化用触媒
2.1.3 モータ
2.1.4 バッテリおよび燃料電池
2.2 鉄道とレアメタル
2.2.1 車体用材料
2.2.2 車体以外の構造材料
2.2.3 軌道施設用ならびに電力施設用材料
2.3 航空機とレアメタル
2.3.1 航空エンジン用材料の変遷と動向
2.3.2 Ti合金の材料開発
2.3.3 Ni基超合金の材料開発

88ご冗談でしょう?名無しさん2019/08/19(月) 14:22:26.21ID:79V/Bmub
3. 社会基盤技術とレアメタル―火力発電プラント用フェライト系耐熱鋼とレアメタル―(阿部冨士雄)
3.1 はじめに
3.2 フェライト系耐熱鋼,オーステナイト系耐熱鋼の特徴と開発の系譜
3.3 焼戻マルテンサイト組織とクリープ強化機構
3.4 クリープ強化のための合金元素の有効利用
3.4.1 ナノ析出物のみの分散によるクリープ強化
3.4.2 ボロンによる粒界近傍M23C6炭化物の長時間微細分散,組織安定化
3.4.3 Re添加による長時間クリープ強度向上
3.5 析出物粗大化,有害相生成等による強化機能喪失
3.6 Crレスアロイ9Cr鋼のプロセス利用による表面Cr濃化

104 名前:ご冗談でしょう?名無しさん[sage] 投稿日:2012/01/20(金) 01:22:38.77 ID:???
4. 医療技術とレアメタル―金属系バイオマテリアルとレアメタル―(新家光雄)
4.1 はじめに
4.2 生体用Niフリーステンレス鋼およびコバルト合金
4.3 生体用チタン合金
4.4 生体用マグネシウム合金
4.5 歯科用貴金属合金

5. 資源リスクの現状とリスク軽減の道―希少資源・元素の現状―(原田幸明)
5.1 はじめに
5.2 資源リスクの現段階
5.3 資源の持続可能性の3つの観点
5.4 地球環境の持続可能性への指標:エコロジカル・リュックサック
5.5 人類経済の持続性への指標:資源疲弊度
5.6 国レベルの持続性:供給安定性
5.7 持続可能性への希少資源・元素戦略

89ご冗談でしょう?名無しさん2019/08/19(月) 14:22:53.97ID:79V/Bmub
第2章 元素代替・減量技術
1. インジウム(In)代替ZnO透明導電膜(藤田静雄)
1.1 透明導電膜におけるレアメタルへの依存
1.1.1 透明導電膜の利用分野
1.1.2 In資源の問題
1.2 ZnO透明導電膜
1.2.1 ZnO透明導電膜の特性
1.2.2 アクティブデバイス材料としてのZnO
1.2.3 ZnO透明導電膜の成膜技術
1.2.4 ZnO透明導電膜の加工技術
1.2.5 ZnO透明導電膜の将来
1.3 各種透明導電膜
1.3.1 無機系材料薄膜
1.3.2 有機系材料薄膜

2. 希土類磁石向けディスプロシウム(Dy)使用量低減技術開発(杉本諭)
2.1 はじめに
2.2 Nd-Fe-B系磁石の市場と用途
2.3 Nd-Fe-B系磁石
2.4 省Dyの必要性
2.5 今後の研究

90ご冗談でしょう?名無しさん2019/08/19(月) 14:23:28.14ID:79V/Bmub
3. ニッケル(Ni)代替ステンレス鋼(片田康行)
3.1 はじめに
3.2 世界の研究動向
3.3 国内の研究動向
3.4 加圧ESR法による高窒素ステンレス鋼(HNS)の創製
3.5 高窒素ステンレス鋼(HNS)の機械的性質
3.6 シャルピー衝撃試験
3.7 高窒素ステンレス鋼(HNS)の耐食性
3.8 N添加による耐食性向上発現機構
3.9 高窒素ステンレス鋼(HNS)の加工性
3.10 おわりに

4. 鉛(Pb)代替圧電材料(任暁兵,劉文鳳)
4.1 はじめに
4.2 世界の研究動向
4.2.1 BaTiO3をベースにした鉛フリー圧電材料
4.2.2 KNbO3と(KNa)NbO3をベースにした鉛フリー圧電材料
4.2.3 Bi0.5Na0.5TiO3系
4.2.4 Bismuth層状圧電体
4.2.5 Tungsten Bronze構造を持つ圧電材料
4.3 日本国内の鉛フリー圧電材料に関する研究状況
4.4 今後の研究動向
4.5 まとめ

91ご冗談でしょう?名無しさん2019/08/19(月) 14:23:55.97ID:79V/Bmub
5. 超硬合金におけるタングステン(W)の代替(木研一)
5.1 はじめに
5.2 タングステン資源の現状
5.3 超硬合金およびサーメットの開発動向
5.3.1 超硬合金の開発動向
5.3.2 サーメットの開発動向
5.4 超硬合金代替材料
5.4.1 TiN系サーメット
5.4.2 ホウ化物系サーメット
5.5 今後の開発動向

6. 亜鉛(Zn)代替防食鋼板(藤本慎司)
6.1 鉄鋼材料の表面処理
6.1.1 自動車用鋼板
6.1.2 家電用プレコート鋼板
6.1.3 建築・建材用塗装鋼板
6.2 亜鉛の資源状況
6.3 亜鉛の環境規制
6.4 亜鉛代替への要請と亜鉛めっきに代る新表面処理に必要とされる特性
6.4.1 工業プロセスとしての優位性
6.4.2 亜鉛の耐食性
6.4.3 加工性 
6.5 亜鉛代替新表面処理
6.5.1 亜鉛代替金属被覆―溶融めっき―
6.5.2 亜鉛代替金属被覆―非水電解めっき―
6.5.3 その他の亜鉛めっき代替

92ご冗談でしょう?名無しさん2019/08/19(月) 14:24:42.06ID:79V/Bmub
7. コバルト(Co)代替リチウム電池(菅野了次)
7.1 リチウム電池とレアメタル
7.2 リチウム電池の現状
7.3 リチウム電池の需要
7.4 リチウム電池とは
7.5 リチウム電池の用途
7.6 コバルト代替リチウム電池正極材料
7.7 電池材料のリサイクルについて
7.8 蓄電デバイスにおけるリチウム

8. 希土類元素フリーのマグネシウム(Mg)合金(千野靖正)
8.1 はじめに
8.2 希土類フリー耐熱Mg合金
8.3 組織制御を利用した希土類フリー耐熱Mg合金

93ご冗談でしょう?名無しさん2019/08/19(月) 14:26:18.71ID:79V/Bmub
9. 白金(Pt)およびパラジウム(Pd)触媒の新規調製と効率利用技術(森浩亮,白仁田沙代子,山下弘巳)
9.1 はじめに
9.2 Ti含有メソポーラスシリカ担体へのPt固定化
9.3 Ti含有ゼオライト担体へのPd固定化
9.4 Pdナノ触媒の逐次反応プロセスによる高効率利用
9.5 おわりに

第3章 全面代替のための材料設計(物質の属性代替)
1. ナノ構造を利用しセメントを半導体,金属,そして超伝導体に変える:C12A7エレクトライドの電子物性と電子構造(細野秀雄)
1.1 はじめに
1.2 ナノポーラス結晶C12A7
1.3 C12A7の電気伝導性の発見
1.4 エレクトライド
1.5 ケージの中の電子状態
1.6 絶縁体-金属転移
1.7 金属-超電導転移
1.8 C12A7エレクトライドの応用とこれからの展開

94ご冗談でしょう?名無しさん2019/08/19(月) 14:26:49.89ID:79V/Bmub
2. 有機材料によるシリコン代替―有機エレクトロニクスの可能性―(若山裕)
2.1 はじめに
2.2 有機トランジスタの現状と課題
2.3 有機トランジスタ開発の実施例:クウォーテリレン分子を例に
2.4 有機トランジスタの今後
2.5 その他の有機エレクトロニクス素子
2.6 おわりに

3. 稀少元素フリー鉄鋼材料(津ア兼彰)
3.1 はじめに
3.1.1 鉄鋼にまだ研究することがあるのですか?―愚問と誤解に答える―
3.1.2 社会環境変化に対応する基盤材料の研究開発が必要
3.1.3 組織制御プロセス技術が鍵を握る
3.2 超鉄鋼研究で捉えたもの-鉄鋼の奥深さとメタラジーの可能性
3.2.1 合金元素選択の幅を広げた結晶粒微細化の組織制御(脆化元素活用)
3.2.2 フェライト鋼の使用温度を高めた粒界析出物の組織制御(長時間組織安定化)
3.2.3 高強度ボルトを実現した遅れ破壊の克服(ナノ炭化物活用)
3.2.4 内部割れの克服による疲労強度の向上(組織の微細均一化)
3.2.5 今こそ求められているマテリアルサイエンス

95ご冗談でしょう?名無しさん2019/08/19(月) 14:27:51.83ID:79V/Bmub
4. 材料中の水素誘起新機能(亀川厚則,藤田麻哉,山口明,中東潤,山内美穂,岡田益男)
4.1 はじめに
4.2 水素が有するナノ加工プロセス機能
4.2.1 チタン系合金の超微細組織化と超塑性
4.2.2 Al系合金などのHDDR現象発現とナノ結晶化
4.3 材料中における水素固溶誘起新機能
4.3.1 水素吸放出による光学特性変化を利用した窓用材料の開発
4.3.2 メタ磁性材料における水素導入による磁歪・応力センシング機能応用
4.3.3 金属ナノ粒子における水素誘起高機能発現
4.4 まとめ

5. 3d遷移金属系材料の機能発現による元素代替(藤田麻哉,西野洋一,土谷浩一,竹中康司,深道和明)
5.1 はじめに
5.2 元素代替のための3d系機能材料設計
5.2.1 Fe基熱電変換材料
5.2.2 Ni基アクチュエータ材料
5.2.3 Mn基負熱膨張材料
5.2.4 Fe基磁気冷凍材料
5.3 おわりに

96ご冗談でしょう?名無しさん2019/08/19(月) 14:28:23.75ID:79V/Bmub
6. ポーラス構造による材料減量化・高機能化(袴田昌高,馬渕守)
6.1 はじめに
6.2 ポーラス金属の作製法
6.2.1 液相発泡法
6.2.2 半溶融・固相発泡法
6.2.3 インベストメント鋳造法
6.2.4 一方向凝固法
6.2.5 スペーサー法
6.2.6 脱合金化法
6.3 ポーラス構造による高機能化
6.3.1 衝突エネルギー吸収
6.3.2 吸音
6.3.3 防振
6.3.4 孔径のナノ化による高強度化
6.3.5 ナノポーラス金属の特異機能
6.4 おわりに

97ご冗談でしょう?名無しさん2019/08/19(月) 14:28:51.63ID:79V/Bmub
7. 第一原理シミュレーション計算の概要と代替材料開発への適用(川添良幸,水関博志,佐原亮二)
7.1 概要
7.2 ITOのスズ置換の安定サイトに関する理論研究
7.3 白金合金上におけるCOの酸化に関する理論研究
7.4 代替材料設計開発における第一原理シミュレーション計算の将来展望

8. ラティスエンジニアリングによる機能代替設計(知京豊裕)
8.1 はじめに
8.2 ラティスエンジニアリングとは
8.3 コンビナトリアル薄膜合成と高速評価手法
8.4 構造評価
8.4.1 コンビナトリアルX線回折解析法
8.4.2 透過型電子顕微鏡による構造評価
8.5 コンビナトリアル材料合成と酸化物熱電材料の探索
8.6 まとめ

第4章 レアメタルのマテリアルフローと社会ストック
1. レアメタルの社会リザーブの意味(中村崇)
1.1 はじめに
1.2 循環型社会における金属元素の利用
1.3 大量生産システムにおける資源
1.4 保管することの問題点と意味
1.5 まとめ

98ご冗談でしょう?名無しさん2019/08/19(月) 14:29:17.36ID:79V/Bmub
2. フラットパネルディスプレイを中心としたインジウム(In)のマテリアルフロー(中條寛,中村崇)
2.1 マテリアルフローの大宗とそのポイント
2.2 マテリアルフロー把握における課題
2.3 将来的に考えられるシナリオと対応課題

3. 触媒を中心としたPGMのマテリアルフロー(中條寛,中村崇)
3.1 マテリアルフローの大宗とそのポイント
3.2 マテリアルフロー把握における課題
3.3 将来的に考えられるシナリオと対応課題

4. 超硬工具を中心としたタングステン(W)のマテリアルフロー(中條寛,中村崇)
4.1 マテリアルフローの大宗とそのポイント
4.2 マテリアルフロー把握における課題
4.3 将来的に考えられるシナリオと対応課題

5. Nd-Fe-B磁石のマテリアルフロー(中條寛,中村崇)
5.1 マテリアルフローの大宗とそのポイント
5.2 マテリアルフロー把握における課題
5.3 将来的に考えられるシナリオと対応課題

99ご冗談でしょう?名無しさん2019/08/19(月) 14:29:48.54ID:79V/Bmub
6. 廃小型電子機器におけるレアメタルストックのポテンシャル(白鳥寿一,中村崇)
6.1 はじめに
6.2 廃電気・電子機器の廃棄量の推計
6.2.1 廃電気・電子機器の範囲
6.2.2 推計の条件
6.2.3 推計結果
6.3 廃電気・電子機器の金属含有量の推計
6.3.1 金属含有量推定の考え方
6.3.2 金属含有量の推定結果
6.4 おわりに

7. 廃電子機器の国際循環(村上進亮)
7.1 国際資源循環
7.2 日本で発生する廃電子機器のフロー
7.2.1 家電4品目のフロー
7.2.2 PCのフロー
7.2.3 その他の廃電子機器
7.2.4 輸出後の流れ
7.3 E-wasteの国際資源循環のメリットとデメリット
7.3.1 メリット
7.3.2 デメリット
7.4 今後の見通し

100ご冗談でしょう?名無しさん2019/08/19(月) 14:30:30.32ID:79V/Bmub
第5章 リサイクル技術の動向
1. レアメタルのリサイクル全般(岡部徹)
1.1 はじめに
1.2 レアメタルのリサイクルについて
1.3 インジウムなどの副産物レアメタルのリサイクル
1.4 需要が急増するレアアースのリサイクル
1.5 高い収率でリサイクルされている貴金属レアメタル
1.6 おわりに

2. レアアースのリサイクル(中村英次)
2.1 はじめに
2.2 希土類の応用
2.3 希土類リサイクルの実施状況
2.4 磁石
2.4.1 SmCo磁石
2.4.2 NdFeB磁石
2.5 光磁気ディスク媒体,超磁歪材
2.6 ニッケル水素電池
2.7 蛍光体
2.8 触媒
2.9 研磨剤
2.10 今後


6.5 おわりに

117 名前:ご冗談でしょう?名無しさん[sage] 投稿日:2012/01/20(金) 01:26:35.51 ID:???
3. タングステン(W)のリサイクル(井口剛寿,池ヶ谷明彦)
3.1 はじめに
3.2 タングステンリサイクルの現状
3.3 タングステンのリサイクル技術
3.3.1 亜鉛処理法
3.3.2 酸化-湿式化学処理法
3.3.3 アルカリ溶解法
3.3.4 その他のリサイクル技術
3.4 まとめ

101ご冗談でしょう?名無しさん2019/08/19(月) 14:31:06.76ID:79V/Bmub
4. ハイブリッド自動車用ニッケル水素電池のリサイクル(天満屋泰彦)
4.1 はじめに
4.2 開発背景
4.3 ニッケル水素二次電池
4.4 開発技術
4.5 使用済電池の処理技術
4.5.1 破砕・分別
4.5.2 回収正極活物質の精製
4.5.3 回収負極活物質の精製
4.6 実証試験結果
4.6.1 目的金属回収率
4.6.2 製品品質特性
4.7 おわりに

5. インジウム(In)のリサイクル(中村崇)
5.1 リサイクルの基本
5.2 In生産プロセス
5.3 リサイクル技術
5.4 将来の技術開発の方向性
5.5 まとめ

6. 白金族金属のリサイクル(岡部徹,中田英子)
6.1 はじめに
6.2 白金族金属の需要と供給
6.3 白金族金属の製錬の概要
6.4 白金族金属のリサイクル

102ご冗談でしょう?名無しさん2019/08/19(月) 14:31:26.46ID:79V/Bmub
ふたばちゃんねる、2ch物理板、3chなどを探せ

103ご冗談でしょう?名無しさん2019/08/19(月) 14:32:00.82ID:79V/Bmub
http://uni.2ch.net/test/read.cgi/sci/1326835828/
海水からつくれないか?
http://www.youtube.com/watch?v=iINHCgRQbz8
水素系オリハルコンって、用途は?
… 無題 Name 名無し 10/08/26(木)05:03:01 No.55379 del
窒素系オリハルコンも、米にあるよ。
Oオリハルコン、
O2オリハルコンもあるよ。
Nオリハルコン、米にあるよ。
水素系オリハルコンで、爆弾つくりでしょう。
貴世石帝石貴世世世世世世石
を使うのだが、貴世世世世世世世世世石のつくり方に、帝王石を賢者の石で錬成して
繋げて作るのだが、貴世石帝石貴世世世世世世石を使うのだが、貴世世世世世世世世
世石のつくり方に、サイダーと帝王石を混ぜて、賢者の石で錬成して繋げて作るのだ
が、錬成が難しい。
登記
これでできた大魔導石、金とかき混ぜて反応すると、セラミックプラチナができる。登記
大魔導石と、アルミで、合わせると金ができる 登記
大魔導石と、チタンで、新鉄ができるよ 登記
大魔導石を、硫酸で溶かして、セラミックのつなぎ、くっつけるのにつかう  登記
大魔導石と、大魔導石と、セラミックプラチナを合わせると、金色の大魔導石ができる
登記

104ご冗談でしょう?名無しさん2019/08/19(月) 14:33:03.53ID:79V/Bmub
電気で、三菱にある常温超電導で、以下の超衝撃波をつくってみて、応用は、自由
http://www.youtube.com/watch?v=W_8Ed57HBXA&feature=related
登記

105ご冗談でしょう?名無しさん2019/08/19(月) 14:33:34.72ID:79V/Bmub

106ご冗談でしょう?名無しさん2019/08/19(月) 14:34:07.52ID:79V/Bmub
大魔導石と、大魔導石と合わせて、化合しても良いが、金色の光球ができる
 光球と、プラチナ、(ピュアプラチナでも、セラミックプラチナでも可)、光球を合わせると、化合しても良いが、常温超伝導ができる。光球と光球を何度も合わせて、化合ささせても良いが、純度を高めても良い。
大魔導石は、貴世石帝石貴世世世世世世石
を使うのだが、貴世世世世世世世世世石のつくり方に、帝王石を賢者の石で錬成して
繋げて作るのだが、貴世石帝石貴世世世世世世石を使うのだが、貴世世世世世世世世
世石のつくり方に、サイダーと帝王石を混ぜて、賢者の石で錬成して繋げて作るのだ
が、錬成が難しい。
新鉄、アルミ、などを合わせると、化合させても良いが、反重力物質ができる。   
  登記

大魔導石と、大魔導石と合わせて、化合しても良いが、金色の光球ができる
 光球と、プラチナ、(ピュアプラチナでも、セラミックプラチナでも可)、光球を合わせると、化合しても良いが、常温超伝導ができる。光球と光球を何度も合わせて、化合ささせても良いが、純度を高めても良い。
大魔導石は、貴世石帝石貴世世世世世世石
を使うのだが、貴世世世世世世世世世石のつくり方に、帝王石を賢者の石で錬成して
繋げて作るのだが、貴世石帝石貴世世世世世世石を使うのだが、貴世世世世世世世世
世石のつくり方に、サイダーと帝王石を混ぜて、賢者の石で錬成して繋げて作るのだ
が、錬成が難しい。
登記
新鉄、アルミ、などを合わせると、化合させても良いが、反重力物質ができる。   
  登記

107ご冗談でしょう?名無しさん2019/08/19(月) 14:34:48.45ID:79V/Bmub
大魔導石と、大魔導石と合わせて、化合しても良いが、金色の光球ができる 
光球と、プラチナ、(ピュアプラチナでも、セラミックプラチナでも可)、
光球を合わせると、化合しても良いが、常温超伝導ができる。光球と光球を何度も合わせて、
化合ささせても良いが、純度を高めても良い。
ニッケルと、http://www.youtube.com/watch?v=iINHCgRQbz8、合わせて、
大魔導石となる
新鉄、アルミ、などを合わせると、化合させても良いが、反重力物質ができる
。   
  登記

大魔導石と、大魔導石と合わせて、化合しても良いが、金色の光球ができる 
光球と、プラチナ、(ピュアプラチナでも、セラミックプラチナでも可)、
光球を合わせると、化合しても良いが、常温超伝導ができる。
光球と光球を何度も合わせて、化合ささせても良いが、純度を高めても良い。
ニッケルと、http://www.youtube.com/watch?v=iINHCgRQbz8、合わせて、
賢者の石となる
登記
新鉄、アルミ、などを合わせると、化合させても良いが、反重力物質ができる
。   
  登記

108ご冗談でしょう?名無しさん2019/08/19(月) 14:35:40.77ID:79V/Bmub
エネルギー圧縮には、多々、丸型プラグを付けるとして 縮退炉、
ニトログリセリンをブロック式に並べる楕円形循環エネルギー反応式でいいです。
ニトログリセリンのブロックには、
一つ一つ、エネルギーが高くなっていく合成ニトログリセリンをブロック式順序付けていきます。

バイオ燃料(葉っぱ、や木などなんでも)を賢者の石と反応させて、
ガソリンでも、ジェット燃料でも、作り放題だ 登記
圧縮縮退炉に、グロン 固形をつかう 登記 場の理論はすべて解いた。
圧縮縮退炉は、できてるし、設計図もある。圧縮縮退炉に、
グロン 固形をつかう 登記 圧縮縮退炉に、グロン 物質 固形をつかう 登記

水素液なんて、賢者の石とうまくあわせると増幅しちゃうぞ、
量も一滴から、tレベルまで増量するし、登記ハイオクガソリンって
賢者の石とうまくあわせると増幅しちゃうぞ、
量も一滴から、tレベルまで増量するし、登記液体燃料も、
賢者の石とうまくあわせると増幅する 登記
液体を、固体にすれば、固形使えるだろ 登記燃料を固形にしたければ、
乾燥させればよい 登記
りんごジュースは、乾燥させて、りんごパイにすればいい 登記


大麦はすって、乾燥させて、増量にすればいい 液体を、固体にすれば、固形使えるだろ 登記

大魔導石は、貴世石帝石貴世世世世世世石
を使うのだが、貴世世世世世世世世世石のつくり方に、帝王石を賢者の石で錬成して
繋げて作るのだが、貴世石帝石貴世世世世世世石を使うのだが、貴世世世世世世世世
世石のつくり方に、サイダーと帝王石を混ぜて、賢者の石で錬成して繋げて作るのだ
が、錬成が難しい。 登記 大魔導石と、アルミで、合わせると金ができる 登記 
これで、金、銀はできる。レアメタル、新代替レアメタルだろうが、新物質だろうが、作り放題だ 登記

109ご冗談でしょう?名無しさん2019/08/21(水) 10:20:44.53ID:k1oPe234

110ご冗談でしょう?名無しさん2019/08/21(水) 10:27:57.85ID:k1oPe234

111ご冗談でしょう?名無しさん2019/08/27(火) 23:28:44.85ID:7towx9UG
https://twitter.com/fvken777

近親相姦便器ダニニホンザルヒトモドキクソぐいゴキブリ殺せ
https://twitter.com/5chan_nel (5ch newer account)

新着レスの表示
レスを投稿する